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a b s t r a c t

When locality preserving projection (LPP) is applied to face recognition, it usually suffers from the small
sample size (SSS) problem, which means that the eigen-equation of LPP cannot be solved directly. In
order to address this issue, we propose a novel LPP scheme. This scheme transforms the objective func-
tion of LPP into a new function, which allows the resultant eigen-equation to be directly solved no matter
whether the SSS problem occurs or not. Moreover, the fact that the proposed scheme has an adjustable
parameter enables us to be able to obtain the best classification accuracy by adjusting the parameter. Our
analysis comprehensively reveals the theoretical properties of the proposed scheme and its relationship
with other LPP methods. Our analysis also shows that the conventional LPP can be regarded as a special
form of the proposed scheme, which also implies that the classification accuracy of the conventional LPP
will be lower than the best classification accuracy of the proposed scheme.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

LPP can preserve the local structure of the data set when reduc-
ing the dimension of samples (Belkin & Niyogi, 2001; He, Cai, &
Min, 2005; He & Niyogi, 2003; He, Yan, Hu, & Zhang, 2003; Min,
Lu, & He, 2004). This means that after the LPP transformation, sam-
ples that were in close proximity in the original space remain in
close proximity in the new space. Since LPP uses the same linear
mapping to transform all the samples into a new space, it can also
be viewed as a linear feature extraction method (Yang, Zhang,
Yang, & Niu, 2007; Yan et al., 2007).

In the past several years, some improvements to the conven-
tional LPP have been proposed. For example, in order to exploit
the class membership relation, supervised locality preserving pro-
jection (SLPP) methods (Yu, Teng, & Liu, 2006; Zheng, Yang, Tan, Jia,
& Yang, 2007) have been proposed.

LPP obtains its solution by solving an eigen-equation. It should
be 8pointed out that for image recognition applications, the con-
ventional LPP usually suffers from the small size (SSS) problem
and the corresponding eigen-equation cannot be solved directly
(He, Yan, Hu, Niyogi, & Zhang, 2005; Pan & Ruan, 2008). There
are the following two reasons: The first reason is that the conven-
tional LPP should first transform the 2D image matrices into one-
dimensional vectors (hereafter they are called sample vectors)
and consequently the sample vectors have a very high dimension-
ality. The second reason is that for the image recognition applica-
ll rights reserved.
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tion, the number of the training samples is usually smaller than
the dimensionality of the sample vectors and the matrices in the
eigen-equation. As a result, the matrices in the generalized eigen-
value equation of the conventional LPP are singular and the SSS
problem occurs (Feng, Hu, & Zhou, 2008; Hu, Feng, & Zhou, 2007;
Xu & Zhang, 2008).

In this paper we propose a novel scheme, namely the LPP sub-
traction scheme, to implement LPP. The proposed scheme consid-
ers the locality projection preserving issue as a multi-objective
programming issue. This allows us to obtain a nice LPP solution
that can be easily obtained in all the cases including the SSS case.
This paper has the following main contributions: First, it proposes,
for the first time, the LPP subtraction scheme, which allows us to
directly solve the eigen-equation of LPP no matter whether the
SSS problem occurs or not. Second, it comprehensively reveals
the theoretical properties of the LPP subtraction scheme. Third, it
clearly shows that the conventional LPP can be regarded as a spe-
cial form of the proposed scheme, which indeed implies the best
classification accuracy of the proposed scheme will be better than
the classification accuracy of the conventional LPP. Additionally,
our experiments provide adequate information about the variation
with the value of the parameter of the classification accuracy of the
LPP subtraction scheme.

The remainder of this paper is organized as follows. In Section 2,
we first briefly present the conventional LPP. In Section 3, we pro-
pose the LPP subtraction scheme, present its theoretical properties,
reveal its relationship with other LPP methods and describe its fea-
ture extraction procedure. In Section 4, we test the proposed LPP
scheme using a large face database and compare the classification
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results of the proposed LPP scheme and other methods. Section 5
offers our conclusion.

2. LPP subtraction scheme

In this section we first present the eigen-equation of LPP and
then propose the LPP subtraction scheme that can easily work
out the LPP solution no matter whether the SSS problem occurs
or not. The goal of the conventional LPP is to work out the maxi-
mum eigenvalue solution of

XWXT z ¼ kXDXT z; ð1Þ

where X ¼ ½ x1 x2 . . . xN �. xi represents the one-dimensional
vector corresponding to the ith sample. In practice, one should con-
vert (1) into ðXDXTÞ�1XWXT z ¼ kz and then solve this equation to
obtain its maximum eigenvalue solution. In the case where the
SSS problem occurs, since XDXT is singular, this equation cannot
be solved directly.

We present the LPP subtraction scheme as follows. Let
W ¼ XWXT ; D ¼ XDXT . We can regard that the maximum eigen-
value solution of (1) is equivalent to the solution that maximizes
the following objective functions:

max
zT Wz

zT z

 !
; ð2Þ

min
zT Dz
zT z

: ð3Þ

Then we face a problem of solving a multi-objective programming
problem with the objective functions (2) and (3). This multi-objec-
tive programming problem cannot be solved directly, so we convert
it into a single-objective programming problem. We use the addi-
tive rule to combine (2) and (3) to produce the following single
objective optimization problem:

max
zT Wz

zT z
� zT Dz

zT z

 !
¼max

zTðW � lDÞz
zT z

; ð4Þ

where l represents a real number.
If zT z satisfies the constraint zT z ¼ 1, then (4) can be converted

into the objective function max zTðW � lDÞz. Thus, in order to ob-
tain the vector z that satisfies this objective function under the
constraint zT z ¼ 1, we define the following Lagrangian function:

Lðz;lÞ ¼ zTðW � lDÞz� kðzT z� 1Þ: ð5Þ

If (5) reaches its extreme maximum value, zT ðW�lDÞz
zT z will also obtain

its extreme maximum value.
Let @Lðz;lÞ

@z ¼ 0, then we have

ðW � lDÞz ¼ kz: ð6Þ

We note that (6) is an eigen-equation. As a result, we can conclude
that the optimal projecting axis should be the eigenvector corre-
sponding to the largest eigenvalue of the matrix W � lD. If k pro-
jecting axes are needed, we should take the k eigenvectors
corresponding to the first k largest eigenvalues of W � lD as the k
projecting axes. This scheme is referred to as LPP subtraction
scheme. By substituting Eq. (6) into zTðW � lDÞz we obtain

zTðW � lDÞz ¼ k: ð7Þ

The major advantages of the LPP subtraction scheme are as fol-
lows: First, differing from the conventional LPP scheme which is
inapplicable to the case where D is singular, the eigen-equation
of the conventional LPP scheme (Eq. (6)) can be directly solved in
all the cases no matter whether the matrix D is singular or not.
However, when the SSS problem occurs, we cannot directly solve
the eigen-equation of the conventional LPP. Second, when we di-
rectly solve (6) no matrix inverse operation should be performed,
whereas when solving the eigen-equation of the conventional
LPP scheme we should calculate the inverse matrix of XDXT in
advance. As we know, the matrix inverse operation needs a high
computational cost. Thus, solving the eigen-equation (6) with fixed
l of the LPP subtraction scheme needs a lower computational cost
than solving the eigen-equation of the conventional LPP scheme.

3. Analysis on the LPP subtraction scheme

3.1. The LPP subtraction scheme with nonsingular D

In this subsection we will analyze properties of the LPP subtrac-
tion scheme that has nonsingular D and show that under the condi-
tion of nonsingular D the conventional LPP is a special form of the
proposed LPP subtraction scheme. Let z0 represent the optimal pro-
jection direction determined by the LPP subtraction scheme. Since
the LPP subtraction scheme has the parameter l, we define the fol-
lowing function

f ðlÞ ¼ zT
0ðW � lDÞz0

zT
0z0

: ð8Þ

Eq. (8) can show how the capability of locality preserving projection
of z0 varies with the parameter l. Indeed we can also use Eq. (8) to as-
sess the variation with l of the capability of locality preserving pro-
jection of arbitrary projection direction z, if we replace z0 in (8)
with z.

We note that f ðlÞ ¼maxz–0
zT ðW�lDÞz

zT z . Based on (7), we know that
f ðlÞ is indeed the largest eigenvalue of the matrix W � lD. This
can be easily demonstrated by using the extremum property of
generalized Rayleigh quotient.

In the context below, we explore more properties of the LPP
subtraction scheme by proving two theorems.

Theorem 1. f ðlÞ is a monotone decreasing function. Especially, if the
matrix D is nonsingular, f ðlÞ will be a strictly monotone decreasing
function.

Proof. Let l1 < l2. Suppose that z1 and z2 are the unit eigenvec-
tors corresponding to the largest eigenvalues of the matrices
W � l1D and W � l2D, respectively. Then we have
f ðl1Þ ¼ zT

1ðW � l1DÞz1 P zT
2ðW � l1DÞz2. One the other hand,

zT
2ðW �l1DÞz2 ¼ zT

2ðW �l2DÞz2þðl2 �l1ÞzT
2Dz2 ¼ f ðl2Þ þ ðl2� l1Þ

zT
2Dz2. Since D is semi-positive definite, we have zT

2Dz2 P 0. Thus,
f ðl1ÞP f ðl2Þ is certain. That is, f ðlÞ is a monotone decreasing
function. h

If D is non-singular, then D is positive definite and we have
zT

2Dz2 > 0. As a consequence, we can conclude that if D is non-sin-
gular, f ðl1Þ > f ðl2Þ will be always satisfied. That is, if D is non-sin-
gular, f ðlÞ is a strictly monotone decreasing function.

Theorem 2. If D is nonsingular, it can be demonstrated that the
conventional LPP is a special form of the proposed LPP subtraction
scheme.

Proof. First of all, we know thatf ð0Þ ¼ maxz–0

zT Wz
zT z ¼ kW > 0, where

kW stands for the largest eigenvalue of W . If z is an arbitrary unit
vector, we obtain

zT Wz 6 kW : ð9Þ

Let kD denote the smallest eigenvalue of D. For an arbitrary unit vec-
tor z, we have

zT Dz P kD > 0; ð10Þ
The combination of (9) and (10) allows us to obtain

f ðlÞ 6 kW � lkD: ð11Þ

According to (11), we know that f ðl1Þ < 0 when l1 > kW=kD.
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According to Cao (1980), for a continuous function f ðlÞ, there
must exist such a point l0 in the interval ð0;l1Þ that f ðl0Þ ¼ 0.
Since f ðlÞ defined in this paper is a strictly monotone function,
there will be an unique l0 that satisfies f ðl0Þ ¼ 0.

f ðl0Þ ¼ 0 means that ðW � l0DÞzðl0Þ ¼ 0, i.e. Wzðl0Þ ¼ l0Dzðl0Þ,
which is indeed the eigen-equation of the conventional LPP. This
shows that if the parameter l of the LPP subtraction scheme is set
to such a value that allows f ðlÞ ¼ 0 to be satisfied, then the LPP
subtraction scheme is identical to the conventional LPP. Thus, we
can conclude that the conventional LPP is a special form of the
proposed LPP subtraction scheme. h
Fig. 1. Variation with the value of the parameter l of the classification error rate of
the supervised LPP subtraction scheme. This figure shows the error rates when 4, 8
and 12 images of each subject are used as training samples, respectively. The x-axis
represents the value of the parameter l while the y-axis stands for the mean of the
error rate.
3.2. Asymptotic characteristic of the LPP subtraction scheme

With this subsection, we show the asymptotic characteristic of
the LPP subtraction scheme. We start with the following theorem.

Theorem 3. Under the condition that D is nonsingular, the zðlÞ
produced by the proposed subtraction scheme approximates the unit
eigenvector corresponding to the smallest eigenvalue kD of D when the
parameter l approximates positive infinity.

Proof. Let z0 represent the unit eigenvector corresponding to the
smallest eigenvalue kD of matrix D. Let zl be the unit eigenvector
corresponding to the largest eigenvalue of matrix W � lD. Then,
for any unit vector z, we have:

zT
lðW � lDÞzl P zTðW � lDÞz: ð12Þ

Let vl ¼ zl � z0. Then we have the following inequality:

ðvl þ z0ÞTðW � lDÞðvl þ z0ÞP z0TðW � lDÞz0: ð13Þ

This can be rewritten as:

lðvT
lDvl þ 2vT

lDz0Þ 6 zT
lWzl � ðz0ÞT Wz0 6 zT

lWzl þ ðz0ÞT Wz0

6 2kW ; ð14Þ

where kW still represents the maximum eigenvalue of W .
Since Dz0 ¼ kDz0, the inequality (14) can be rewritten as:

vT
lDvl þ 2kDvT

lz0 6 2kW=l: ð15Þ

Since zl ¼ vl þ z0 and zT
lzl ¼ ðz0ÞT z0 ¼ 1 we have:

vT
lvl ¼ �2vT

lz0: ð16Þ

By substituting Eq. (16) into (14), we obtain:

vT
lDvl � kDvT

lvl 6 2kW=l: ð17Þ

From (17), we have liml!1ð2kW=lÞ ¼ 0. In other words, when
l!1, we obtain vT

lDvl � kDvT
lvl 6 0. On the other hand, since

kD is the smallest eigenvalue of the matrix, we should have
vT

lDvl P kDvT
lvl. As a result, we know that:

lim
l!1

vT
lDvl ¼ kDvT

lvl: ð18Þ

According to the definition of vl we have liml!1vl ¼ 0, i.e.

lim
l!1

zl ¼ z0: ð19Þ

This completes the proof of Theorem 3. h
3.3. Feature extraction and classification procedure

For a multi-class problem, there are more than one effective dis-
criminant vector. Thus, we can first take the eigenvector corre-
sponding to the maximum eigenvalue of Eq. (6) as the first
projecting axis. If k projecting axes are required, we should take
the k eigenvectors corresponding to the first k largest eigenvalues
of Eq. (6) as the projecting axes. These projecting axes are orthog-
onal to each other and they form a non-redundant coordinate sys-
tem to represent the samples.

The feature extraction and classification procedure of the multi-
class problem is as follows:

Step 1. Solve the eigenvectors corresponding to the first k largest
eigenvalues of Eq. (6). Take them as projecting axes.

Step 2. Project each training and each test sample onto each of
the k projecting axes to produce its respective feature
vector.

Step 3. Use the nearest neighbor to classify the test samples.
4. Experiments

We test the LPP subtraction scheme using the AR face database.
In this database, each subject has 26 images. We transformed each
face image of the AR face database to a 50 � 40 matrix using the
down-sampling scheme shown in Xu and Jin (2008). We tested
the methods in the cases where different numbers of images per
subject were used as training samples.

We first generated a series of random numbers and then se-
lected training samples using these random numbers. For example,
when we performed the experiment on eight training samples per
subject, we first generated a series of random numbers including
eight numbers with the range of from 1 to 26. Then we checked
the filename of each face image to determine whether it should
be taken as a training sample or not. For a face image of each sub-
ject, if the number included in its filename was same as one of the
random number, then the image was selected as one training sam-
ple; otherwise it was used as one test sample. In order to obtain
representative experimental result under the condition of a fixed
number of training samples per subject, we tested each of the
methods 5 times each using different series of random numbers.

We should point out that the LPP subtraction scheme proposed in
this paper is an unsupervised LPP scheme. As we know, the differ-
ence between unsupervised LPP and supervised LPP is only from
the definitions of the matrices W and D. If we define the matrices
W and D in the same way as work (Zheng et al., 2007), the
proposed LPP subtraction scheme becomes a supervised LPP scheme
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and can be referred to as supervised LPP subtraction scheme. We use
Fig. 1 to show the variation with the value of the parameter l of the
mean of the classification error rates of the supervised LPP subtrac-
tion scheme. Fig. 1 shows that when l is set to a negative value, the
supervised LPP subtraction scheme usually obtains a low classifica-
tion error rate. On the other hand, whenl is set to a large enough po-
sitive value, the supervised LPP subtraction scheme produces a high
classification error rate. Fig. 1 also shows that whenl is set to a small
enough positive value the supervised LPP subtraction scheme ob-
tains its lowest error rate.
5. Conclusion

The LPP subtraction scheme proposed in this paper allows us to
obtain a LPP solution in a computationally tractable way. The anal-
ysis on the theoretical properties of the proposed scheme clearly
shows its asymptotic characteristics and reveals the relationship
between the LPP subtraction scheme and other LPP methods. Com-
pared to the conventional LPP, the LPP subtraction scheme has the
following main advantages: The first is that the corresponding ei-
gen-equation can be directly solved no matter whether the SSS
problem occurs or not. The second is that solving the eigen-equa-
tion with fixed l of the LPP subtraction scheme needs a lower com-
putational cost than solving the eigen-equation of the conventional
LPP scheme. The third is that by adjusting the parameter the pro-
posed scheme is able to produce a higher recognition accuracy
than the conventional LPP. Experimental results provide adequate
information about the variation with the value of the parameter of
the classification error of the LPP subtraction scheme.
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